2023年03月03日

理解するまでの時間がある

説明の下手な人と上手な人の違い。


数学の教科書で考えよう。
分りにくいものの代表だからだ。

なぜわかりにくいのだろう、と高校生くらいのときは、
ずっと疑問だった。
で、大学でファインマン物理学(力学だったと思う)の教科書を読んで、
衝撃を受けたんだよね。
日本の教科書とちがってすごくわかりやすかったんだよ。
なんでか考えると、
そのわかりやすさは、
「こちらが理解するまでのプロセスを、
待っていてくれる」からだと思ったのだ。

つまり、
「初見で分りにくいことを、
きちんとかみ砕いて説明して、
しかも分り終わるまで待ってくれる」
という感じだった。
これは実際に目の前に人がいるならば、
そうしてしまうだろうけど
(相手が分っているか分っていないか分るので)、
教科書のような相手が見えないものだと、
その勘所をつかむのは難しいよね。

で、逆になぜ日本の数学の教科書が分りにくいのだろう?と考えると、
「客観的に正しいことだけを書けば、
分ってくれると考えている」からだと思う。

つまり、
相手が理解する速度とか、能力とかはおいといて、
客観的に正しいことだけを書いてありますよ、
私は間違っていないですよ、
という感じが、日本の教科書なんだよね。

f=maが絶対的に正しいからといって、
その式がどういう意味を持っているかとか、
aはそもそもxの二階微分であるとか、
mは動きにくさの定数であると考えられるとか、
式を見て解釈して理解しなおす時間が、
日本の教科書には書いていない。
しかしファインマンはそれをきちんと議論した。

この差だ。


日本の教科書は、だから保険の契約書に似ている。
間違ったことは書いていなくて、
正しいことを(書く側が)エネルギー最小の形で書いてある。
客観的に正しいから間違っていないですが、何か?
という顔をしている。

理解する側がエネルギー最小であるには、
そこから書く側がサービスをする必要がある。
つまり、
理解へいたる為に、道筋を用意して、
誘導してあげなければいけない。

日本の数学の教科書や、保険の契約書には、
そのような導きがない。


たとえばチャート式のような、
参考書が必要になると思う。

そもそも数学や物理というのは、
現実のややこしいカオスを、
たった一つの数式にまとめたものである。
だから最小の表現に縮約したものである。
だからそれを展開して開かないと、
現実には即さないと思う。

チャート式では、
たいてい冒頭にまとめがあり、
その後に解説がある。

解説は一回読んで理解したら二度と読まなくていい。
(分りにくいなら何回も読むだろう)
つまり、
一回理解したら、解説部分は捨ててよくて、
まとめの部分だけ切り抜いてもってればいいわけ。
カンニングペーパーをつくるならば、
そのまとめの所だけ写せばいいわけだね。

で、
日本の数学の教科書や、保険の契約書って、
このまとめの部分しかないよね、
という話をしている。

ファインマンやチャート式は、
それ以外の解説の部分が大変多い、
という話をしている。



さて、本題だ。

説明の上手な人と、下手な人の違いについて。

もう答えは分るだろう。
下手な人は、
客観的に正しいことだけしか書いてないのだ。

数学の公式を一行だけ書いておしまいだったり、
甲は乙に委託する、
みたいに、
絶対正しいことだけをエネルギー最小形式で書いていて、
「正しいからわかるでしょ」
「正しいから何が間違っているんですか?」
と言っているわけ。

「人は、理解するのに時間がかかるから、
誘導しなければならない」ということを、
想定に入れていないんだよ。

つまり説明の上手な人は、
相手が徐々に理解していく、
「理解プロセス」を想定していて、
その理解プロセスを追い越さないように、
「徐々に説明していく」ということだ。

要素が多いなら、そもそもはしょったり、
段階が多いなら一回休んで俯瞰してみたり、
など、
今どこらへんとかの情報も与えたり、
理解がおいつくように、
抽象的なことを具体例をあげて理解させたりするわけ。

その具体的な方法はおいておくとしても、
つまり、
「説明の上手な人は、説明に時間がかかる」
ことがポイントである。

そりゃそうだよね。
数式一行だけ書けば、
分っている人にはそれだけでいい情報に対して、
チャート式一ページくらい足しているからね。

説明の上手な人は、
その分量を事前に見積ることが上手いのだと思う。
そのうえで、
的確な分量にうまく切り分けて、
相手がかみ砕くまで待って、
最後まで食べきれるようにするのが、
上手なのだと思う。

説明の下手な人は、
チャート式のまとめ部分しか書いていない。
説明の上手な人は、
まとめと説明と両方やる。

つまり説明の上手な人は、
大変な労働量を支払っている。


さて。
映画とは、時間軸を持つメディアである。

その中で、
「説明に要する時間」は、
どれだけ許されるだろうか?
何分、という風に具体的な数字で示せればいいのだが、
なんとも言えないから、
経験的に、
「分る範囲で長く、余計でない範囲で短く」
としか言えないよね。


これでよくあるミスが、
自分は初見でないゆえに、
とくにリライトの時点で、
「これはよくわかっていることだから説明を簡略的にしてしまおう」
と判断してしまうことだ。

分っているのは作者(たち)だけで、
初見の人には時間をかけて説明するべきなのだが、
それを見誤る、ということはとてもよくあるミスである。

「これ分りにくいね」と判断するのは、
初見の人だということを忘れているわけだ。

じゃあ、
一回その映画を見たリピーターが、
二回目を見るときに、
初見の人用に説明する部分は、
邪魔じゃない?

たぶん邪魔だ。待ってなきゃ行けない。
でもそれすら「初見の人が説明を受ける」気分になれるわけだ。
二回目を見ようが、n回目を見ようが、
観客はつねに初見の人として物語を見る。
それを忘れないことだ。
(さすがにものすごいリピートしたら、
初見の人用の説明部分は飛ばすようになるかもだが)

たとえば、
スターウォーズEp4の、
デススター攻略の作戦会議は、
何回見ても、こうなっているのかあ、
この溝をクリアして、ここに放り込むのか、
これは危険なミッションだ、
って毎回思ってしまう。
それでいいと思うんだよね。


あなたは説明が上手か?
日本の数学の教科書みたいに、
一行に情報を縮約しようとしていないか?
それで説明をした気になっていないか?

チャート式を書くことが、
あなたに課せられた期待である。
posted by おおおかとしひこ at 00:08| Comment(0) | TrackBack(0) | 脚本論 | このブログの読者になる | 更新情報をチェックする
この記事へのコメント
コメントを書く
お名前: [必須入力]

メールアドレス:

ホームページアドレス:

コメント: [必須入力]

※ブログオーナーが承認したコメントのみ表示されます。

この記事へのトラックバック